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T H E  I N T E R A C T I O N  OF A M A G N E T O E L A S T I C  S H E A R  WAVE 
W I T H  L O N G I T U D I N A L  CAVITIES IN A C O N D U C T I N G  L A Y E R  

V. I. Os t r ik  a n d  L. A. F i l ' sh t insk i i  UDC 539.3 

We study the influence of a strong magnetic field on the interaction of a shear wave with longitudinal 
cylindrical cavities in an elastic ideally conducting layer. The resulting singular integral equation of the 
boundary-value problem under consideration is implemented numerically for the case of a single cavity. We 
present the results of computation of the stresses on the edge of a circular cavity and an elliptical cavity. 

In connection with the application of superconducting matter  in engineering it is necessary to take account 
of the influence of electromagnetic fields on the dynamic stress of structural elements. This influence is 
especially noticeable when the bodies contain stress concentrators of crack, hole, and inclusion type. 

Certain problems in the diffraction of magnetoelastic waves at straight-line cracks in dia(para)magnetic 
matter were studied in [7-9]. In the present paper we study the problem of diffraction of a magnetoelastic 
wave at holes. The corresponding boundary-value problem of magnetoelasticity reduces to a singular 
integral equation that  is realized numerically by the method of mechanical quadratures. We give numerical 
results that characterize the influence of the magnitude of the preliminary magnetic field, the shape of the 
hole, and the frequency of the excitation on the stress concentration. 

We consider an ideally conducting elastic layer (0 < x < a, - o c  < y < oc, - c o  < z < co) in a static 
magnetic field of intensity H ~ = (0, H0, 0) and weakened by cylindrical cavities along the z-axis. 

Under mechanical action that  deforms the elastic medium an additional electromagnetic field is induced 
in the body and can be considered quasistatic (D = 0, OD/Ot = 0, where D is the displacement current, 
and t is time). Maxwell's equations and the equations of motion, after linearization [3, 5], will be the 
following: 

h = c u r l ( U x H ~  e=- /_ t~  •  ~ , 

(t) 
02U 

#Yr2U + (A + # )g radd ivU + #r  • H ~ = p Ot 2 , 

where h and e are the intensities of the induced magnetic and electric fields, U is the elastic displacement 
vector, A and/z are the Lam~ parameters, #e is the magnetic permeability, p is the density of the medium, 
and ~72 is the Laplacian. 

In the case of steady-state deformation of a longitudinal shear (U = (0, 0, w), w = Re {W(x, y )e -~ t} ,  
and w is the cyclic frequency) the system of equations (1) leads to the following differential equation with 
respect to the amplitude of the displacement W ( x ,  y) (3'2 is the wave number): 

v 2 w  +  ?o2w/ay = 0  = = (2) 

The total stresses ~r~, avz are composed of the mechanical stresses T~, ~-y~ and the Maxwell stresses 
tx~, tv~, and can be expressed in terms of the displacement w(x, y) using the formulas 

~.T~ = ~-~z + t ~ ,  ay~ = ~ + ty~, r.~ = ~ O w / O x ,  %z = t tOw/Oy,  t ~  = O, tyz = ~ x 2 O w / O y .  

We assume that the boundary planes of the layer are free of load 

that a magnetoelastic shear wave 

ow/ox = o = = a ) ,  ( 3 )  

wo = Re{Woe-iWt}, Wo = Texp{i72y/v /T+X 2} (4) 
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is propagating along the y-axis, and that  a t ime-harmonic mechanical load X,, = Y,~ = 0, Z,, = Re {Ze  -''~t } 
possibly acts on the surface of the cavity Sj (j = 1, m).  

Let Lj be the line of intersection of the surface Sj with the xy-plane and n = (cos ~,  sin ~)  the outward 
unit normal to Lj.  Assume tha t  Z and the curvature  of the arc Lj  are functions of class H on Lj  [2]. The 
boundary  condition on the edge of the cavity can be wri t ten as 

(ow/o.,)]~, = i z .  (5) 
# 

We now introduce the coordinates  

x~ = z ,  y l  = y / v / i - +  x: 2, 

in which the resolvent equat ion (2) transforms into the Helmholtz equation 

o~ w /ad  + o~w/ay~ + ~ w  = o. (6) 

The differentials dSl and ds of the arc Lj  in the x t y l  and xy  coordinates are connected by the relations 

d ~  = ~/(1 + x~ sin ~ r  + ~2) d~. 

We represent the solution of the boundary-value problem (2), (3)-(5) as the superposi t ion  W = W0 + W1, 
where Wl(z,  y) is the scat ter ing ampli tude of the wave. We represent the lat ter  as a single-layer potential 
[1]: 

P 

w~ =/p(s)adSl. (7) 
J 

L 

Here Lj = LJ Lj ,  p(s) is the unknown density, and G is the Green's function for the boundary-value 
j = l  

problem (6), (3) for the strip 0 <_ x l  <_ a, - e c  < Yl < CX~: 

a - - - -~1  ei~zl'h-ul12i72a - a ~_= l-~-e-~kl'h-mlAk cos c~k~ cos c~kx, 

v/ ~k (7~<~), A~=-i ~ - ~  ( ~ > ~ ) ,  ~ = - - ,  ~ = ~ / v ~ + x ~ .  
a 

(s) 

The integral representat ion (7) satisfies the differential equation (2), the bounda ry  condit ions (3), and 
the radiative conditions of [6]. 

In the case when 771 = Yl the series in formula (8) converges conditionally, and for f = x, rh = Yl it 
becomes divergent. To get rid of this effect we single out  its principM part ,  obta in ing 

G = Go +G1,  Go = ( G  1 ~ei'~21nl-ull 7=o 
' 2 i 7 2  a ] 

i in 4sin ~r rr ~a  = 2---~ ~aa (~1 - zl) sin ~aa (r + 21) - I rh - Yl [, 

1 
a l  - c o s  a k ~  c o s  ok:c, ~1 = f -4- i~l ,  

2 i 7 2 a  a z__,k=l \ Ak 

(9) 

- - e -  In -y  ,) zl = x + i y l .  
r k / 

It can be seen from this tha t  the function G of (9) satisfies Eq. (2) with ~ # z and has a logarithmic 
singularity as r = ]z - r --* 0. The  general te rm of the  series for G1 dies out  like k -3  when r = 0 and 
exponentially when 7 / #  y. The  Green's function in the form (9) admits  differentiation with respect to its 
variables. 

1451 



Computing the normal derivative of the function W and substituting its limiting value as z ~ if0 = 
~0 + i~/0 E L into the boundary condition (5), we arrive at an integral equation with respect to the function 
p(~): 

b(r + fp(s)M(s, so)ds = f (so) ,  (10) 
L 

b(~o) = - 1 ( 1 +  x2sin2r -�89 r = ~ir162 so = s]r162 o, 

M ( s ,  so) = 

(2a~/ l+x2b(~))  -1 l:[e[(cosr ~ S l n ~ 0  (cOt~a(~ ' l - -~01)--cOt~a(~l  + (01)+2 i sgnr /2 ) ]  

oo 

E ~ \ Ak ak 
k = I  

1 1 e i~21~1 sin r sgn ~ ( e  -~l'~' - e -~l"~t) cos ~r  sin r cos ~ r  + 2 lv/T4--~ sgn V~" 
V/1 + X 2 

f(so) = 1 Z  - T e i~2w~ sin ~o, ~01 ---- %C0 + i7701, 7701 ----- ?70 /V/ l  + X 2, ?72 = 771 --  7701" 
# 2a ~/1 + X 2 

In Eq. (10) the kernel M(s, so) has the estimate 

M(s, s0) = - ( v / ~ +  X 2 - 1) sinr s i n c ~ l l l  + x2sin 2 ~0/(27rrl(1 + X2))+ O(1), ~ol - ~ o  = r l  ei~ 

as s ---* so. Consequently the integral equation (10) is singular for X # 0, while for X = 0 it degenerates 
into a Fredholm equation. In both cases it has a unique solution in the class H [2]. 

The integral equation (10) was solved numerically for the case of a single cavity using the method of 
mechanical quadratures [4]. In the process Eq. (10) was satisfied at the nodes 0i = 27r(i- 1)/n, i = 1 , . . . ,  n, 
and reduced to a system of linear algebraic equations with respect to the unknown quantities p(s(Oj)), 
Oj = 7r(2j - 1)/n, j = 1 , . . . ,  n, where the parametric representation of the edge L was chosen in the form 

= ~(0), 77 = ~7(0), 0 < t9 < 27r. The rectangular quadrature formula having its highest degree of algebraic 
precision in the case of periodic functions for both regular and singular integrals with the set of nodes 0i 
and Oj indicated above was applied to the integral in (10). The values of the density outside the integral at 
the nodes 0~ were determined using the interpolating polynomial of the function p(s(0)) over the nodes 0j: 

n 

! ~ p(s(oj))(_l)~+J csc E ( 2 i  - 2j + 1). p(~(o~)) = . ,  
j = l  

We carried out computations of the stresses crsz = -azzZP + ayz cos ~, cr,~ = azz cos ~ + Cryz sin r = 
tyz s in~ on the surface of the cavity for the diffraction of an incident wave (T # 0) on a cavity (Z = 0) free 
of force. The edge of the cavity was given in the form ~/a = b+ ccos0, r]/a = dsin0,  0 < 0 < 27r; for a 
circular cavity we took the values b = 0.5, c = d = 0.2, and for an elliptic cavity we took b = 0.5, c = 0.2, 
d=0.1 .  

Figures 1-4 show the distribution of stresses on the edge of a circular cavity (Figs. 1, 2) and an elliptic 
cavity (Figs. 3, 4) for two values of the normalized wave number "y2a = 7r (Figs. 1, 3) and 117r/6 (Figs. 
2, 4). The dimensionless quantities 61 and 52 are equal respectively to the ratios of the absolute values of 
the stress amplitudes ~rs~ and cr,~ on the edge L to the quantity ITyl = P72T/V/1 + X 2, where Ty is the 
amplitude of the mechanical stress Tuz in the incident wave. Curves 1-3 correspond to the variation of the 
quantity 61, curves 4- -5  to the quantity 62. Curve i is constructed for the value X = 0 (no magnetic field), 
curves 2, ~ for X = 0.5, and curves 3, 5 for X = 1. 
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Figure 5 shows the variation of the quantity 61 for a circular cavity (X = 0 in curve 1, X = 1 in curve 
2) and an elliptic cavity (X = 0 in curve 3, X = 1 in curve 4 ) as functions of the parameter 72a. The solid 
lines correspond to the stress as,  at the point 0 = 0, the dashed lines to the Maxwell stress as, .  

The functions presented show that the maximal stress ors, for 72a < ~r is observed near the point 0 = 0. 
With approach to the sliding point 72a = 2~ a significant redistribution of stresses occurs, and the maximal 
value of asz shifts to the umbral zone of the incident wave (0 > 0). Here if the value of a~, at 0 = 0 passes 
uniformly through the sliding point (in the case of a circular cavity), then for the maximal stress on the 
edge the sliding point is a resonance point. 

The application of a static magnetic field significantly increases the stresses. Thus in the examples 
under consideration with X = 1 the quantity m0ax 61 increases by 50-80%, corresponding to a 30-60% 

increment in the maximal stress asz on L. Along with this the magnetic field partly counterbalances the 
dynamic effects. To be specific, it equalizes the stresses along the edge somewhat and prevents the shift of 
the maximum of as,  away from the value 0 = 0 as the sliding point is approached. In addition the magnetic 
field generates a stress tnz that satisfies t ~  = 0 when 0 = 0 and reaches its maximal value at 0 ~ ~r/4 and 
~/6 respectively for a circular cavity and an elliptic cavity. 
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